Рабочая программа АЛГЕБРА 10-11

РАБОЧАЯ ПРОГРАММА
учебного предмета «Алгебра и начала математического анализа.
Базовый уровень»
для обучающихся 10-11 классов

Составитель: Уланова Г.Н.

п. Восточный, 2023 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа учебного курса «Алгебра и начала математического анализа» базового
уровня для обучающихся 10 –11 классов разработана на основе
- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- приказа Министерства просвещения РФ от 12 августа 2022 г. № 732 "О внесении
изменений в федеральный государственный образовательный стандарт среднего общего
образования, утвержденный приказом Министерства образования и науки Российской Федерации
от 17 мая 2012 г. № 413";
 приказа Минпросвещения от 18.05.2023 № 371 «Об утверждении федеральной
образовательной программы среднего общего образования»;
 приказа Минпросвещения от 22.03.2021 № 115 «Об утверждении Порядка организации и
осуществления образовательной деятельности по основным общеобразовательным
программам – образовательным программам начального общего, основного общего и
среднего общего образования»;
 концепции преподавания учебного предмета «Математика»;
 СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и
обучения, отдыха и оздоровления детей и молодежи», утвержденных постановлением
главного санитарного врача от 28.09.2020 № 28;
 СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности
и (или) безвредности для человека факторов среды обитания»,
утвержденных постановлением главного санитарного врача от 28.01.2021 № 2;
 учебного плана основного общего образования, утвержденного приказом МБОУ СОШ №1
п. Восточный от 31.08.2023 № 143;
федеральной рабочей программы по учебному предмету «Математика».
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
Курс «Алгебра и начала математического анализа» является одним из наиболее значимых в
программе старшей школы, поскольку, с одной стороны, он обеспечивает инструментальную базу
для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и
абстрактное мышление учащихся на уровне, необходимом для освоения курсов информатики,
обществознания, истории, словесности. В рамках данного курса учащиеся овладевают
универсальным языком современной науки, которая формулирует свои достижения в
математической форме.
Курс алгебры и начал математического анализа закладывает основу для успешного
овладения законами физики, химии, биологии, понимания основных тенденций экономики и
общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных
технологиях, уверенно использовать их в повседневной жизни. В тоже время овладение
абстрактными и логически строгими математическими конструкциями развивает умение находить
закономерности, обосновывать истинность утверждения, использовать обобщение и
конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление. В
ходе изучения алгебры и начал математического анализа в старшей школе учащиеся получают
новый опыт решения прикладных задач, самостоятельного построения математических моделей
реальных ситуаций и интерпретации полученных решений, знакомятся с примерами
математических закономерностей в природе, науке и в искусстве, с выдающимися
математическими открытиями и их авторами.
Курс обладает значительным воспитательным потенциалом, который реализуется как через
учебный материал, способствующий формированию научного мировоззрения, так и через
специфику
учебной
деятельности,
требующей
самостоятельности,
аккуратности,
продолжительной концентрации внимания и ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит
деятельностный принцип обучения.
Структура курса «Алгебра и начала математического анализа» включает следующие
содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и
неравенства», «Начала математического анализа», «Множества и логика». Все основные
содержательно-методические линии изучаются на протяжении двух лет обучения в старшей
школе, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами.
Данный курс является интегративным, поскольку объединяет в себе содержание нескольких
математических дисциплин: алгебра, тригонометрия, математический анализ, теория множеств и
др. По мере того как учащиеся овладевают всё более широким математическим аппаратом, у них
последовательно формируется и совершенствуется умение строить математическую модель
реальной ситуации, применять знания, полученные в курсе «Алгебра и начала математического
анализа», для решения самостоятельно сформулированной математической задачи, а затем
интерпретировать полученный результат.
Содержательно-методическая линия «Числа и вычисления» завершает формирование
навыков использования действительных чисел, которое было начато в основной школе. В старшей
школе особое внимание уделяется формированию прочных вычислительных навыков,
включающих в себя использование различных форм записи действительного числа, умение
рационально выполнять действия с ними, делать прикидку, оценивать результат. Обучающиеся
получают навыки приближённых вычислений, выполнения действий с числами, записанными в
стандартной форме, использования математических констант, оценивания числовых выражений.
Линия «Уравнения и неравенства» реализуется на протяжении всего обучения в старшей
школе, поскольку в каждом разделе программы предусмотрено решение соответствующих задач.
Обучающиеся
овладевают
различными
методами
решения
целых,
рациональных,
иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств
и их систем. Полученные умения используются при исследовании функций с помощью
производной, решении прикладных задач и задач на нахождение наибольших и наименьших
значений функции. Данная содержательная линия включает в себя также формирование умений
выполнять расчёты по формулам, преобразования целых, рациональных, иррациональных и
тригонометрических выражений, а также выражений, содержащих степени и логарифмы.
Благодаря изучению алгебраического материала происходит дальнейшее развитие
алгоритмического и абстрактного мышления учащихся, формируются навыки дедуктивных
рассуждений, работы с символьными формами, представления закономерностей и зависимостей в
виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения
практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка
науки.
Содержательно-методическая линия «Функции и графики» тесно переплетается с другими
линиями курса, поскольку в каком-то смысле задаёт последовательность изучения материала.
Изучение степенной, показательной, логарифмической и тригонометрических функций, их
свойств и графиков, использование функций для решения задач из других учебных предметов и
реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и
неравенств. При этом большое внимание уделяется формированию умения выражать формулами
зависимости между различными величинами, исследовать полученные функции, строить их
графики. Материал этой содержательной линии нацелен на развитие умений и навыков,
позволяющих выражать зависимости между величинами в различной форме: аналитической,
графической и словесной. Его изучение способствует развитию алгоритмического мышления,
способности к обобщению и конкретизации, использованию аналогий.
Содержательная линия «Начала математического анализа» позволяет существенно
расширить круг как математических, так и прикладных задач, доступных обучающимся, у
которых появляется возможность исследовать и строить графики функций, определять их
наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости

и ускорения процессов. Данная содержательная линия открывает новые возможности построения
математических моделей реальных ситуаций, нахождения наилучшего решения в прикладных, в
том числе социально-экономических, задачах. Знакомство с основами математического анализа
способствует развитию абстрактного, формально-логического и креативного мышления,
формированию умений распознавать проявления законов математики в науке, технике и
искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития
математики как науки, и их авторах.
Содержательно-методическая линия «Множества и логика» в основном посвящена
элементам теории множеств. Теоретико-множественные представления пронизывают весь курс
школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы
математики и её приложений, они связывают разные математические дисциплины в единое целое.
Поэтому важно дать возможность школьнику понимать теоретико-множественный язык
современной математики и использовать его для выражения своих мыслей.
В курсе «Алгебра и начала математического анализа» присутствуют также основы
математического моделирования, которые призваны сформировать навыки построения моделей
реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического
анализа и интерпретации полученных результатов. Такие задания вплетены в каждый из разделов
программы, поскольку весь материал курса широко используется для решения прикладных задач.
При решении реальных практических задач учащиеся развивают наблюдательность, умение
находить
закономерности,
абстрагироваться,
использовать
аналогию,
обобщать
и
конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач
организуется в процессе изучения всех тем курса «Алгебра и начала математического анализа».
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ
В учебном плане на изучение курса алгебры и начал математического анализа на базовом
уровне отводится 2 часа в неделю в 10 классе и 3 часа в неделю в 11 классе, всего за два года
обучения – 170 часов.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА
10 КЛАСС
Числа и вычисления
Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные
периодические дроби. Арифметические операции с рациональными числами, преобразования
числовых выражений. Применение дробей и процентов для решения прикладных задач из
различных отраслей знаний и реальной жизни.
Действительные числа. Рациональные и иррациональные числа. Арифметические операции с
действительными числами. Приближённые вычисления, правила округления, прикидка и оценка
результата вычислений.
Степень с целым показателем. Стандартная форма записи действительного числа.
Использование подходящей формы записи действительных чисел для решения практических задач
и представления данных.
Арифметический корень натуральной степени. Действия с арифметическими корнями
натуральной степени.
Синус, косинус и тангенс числового аргумента. Арксинус, арккосинус, арктангенс числового
аргумента.
Уравнения и неравенства
Тождества и тождественные преобразования.
Преобразование тригонометрических выражений. Основные тригонометрические формулы.
Уравнение, корень уравнения. Неравенство, решение неравенства. Метод интервалов.
Решение целых и дробно-рациональных уравнений и неравенств.
Решение иррациональных уравнений и неравенств.
Решение тригонометрических уравнений.
Применение уравнений и неравенств к решению математических задач и задач из различных
областей науки и реальной жизни.
Функции и графики
Функция, способы задания функции. График функции. Взаимно обратные функции.
Область определения и множество значений функции. Нули функции. Промежутки
знакопостоянства. Чётные и нечётные функции.
Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и
график корня n-ой степени.
Тригонометрическая окружность, определение тригонометрических функций числового
аргумента.
Начала математического анализа
Последовательности,
способы
задания
последовательностей.
Монотонные
последовательности.
Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая
прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Формула сложных
процентов. Использование прогрессии для решения реальных задач прикладного характера.
Множества и логика
Множество, операции над множествами. Диаграммы Эйлера―Венна. Применение
теоретико-множественного аппарата для описания реальных процессов и явлений, при решении
задач из других учебных предметов.
Определение, теорема, следствие, доказательство.
11 КЛАСС
Числа и вычисления

Натуральные и целые числа. Признаки делимости целых чисел.
Степень с рациональным показателем. Свойства степени.
Логарифм числа. Десятичные и натуральные логарифмы.
Уравнения и неравенства
Преобразование выражений, содержащих логарифмы.
Преобразование выражений, содержащих степени с рациональным показателем.
Примеры тригонометрических неравенств.
Показательные уравнения и неравенства.
Логарифмические уравнения и неравенства.
Системы линейных уравнений. Решение прикладных задач с помощью системы линейных
уравнений.
Системы и совокупности рациональных уравнений и неравенств.
Применение уравнений, систем и неравенств к решению математических задач и задач из
различных областей науки и реальной жизни.
Функции и графики
Функция. Периодические функции. Промежутки монотонности функции. Максимумы и
минимумы функции. Наибольшее и наименьшее значение функции на промежутке.
Тригонометрические функции, их свойства и графики.
Показательная и логарифмическая функции, их свойства и графики.
Использование графиков функций для решения уравнений и линейных систем.
Использование графиков функций для исследования процессов и зависимостей, которые
возникают при решении задач из других учебных предметов и реальной жизни.
Начала математического анализа
Непрерывные функции. Метод интервалов для решения неравенств.
Производная функции. Геометрический и физический смысл производной.
Производные элементарных функций. Формулы нахождения производной суммы,
произведения и частного функций.
Применение производной к исследованию функций на монотонность и экстремумы.
Нахождение наибольшего и наименьшего значения функции на отрезке.
Применение производной для нахождения наилучшего решения в прикладных задачах, для
определения скорости процесса, заданного формулой или графиком.
Первообразная. Таблица первообразных.
Интеграл, его геометрический и физический смысл. Вычисление интеграла по формуле
Ньютона―Лейбница.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
Освоение учебного предмета «Математика» должно обеспечивать достижение на уровне
среднего общего образования следующих личностных, метапредметных и предметных
образовательных результатов:
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного предмета «Математика»
характеризуются:
Гражданское воспитание:
сформированностью гражданской позиции обучающегося как активного и ответственного
члена российского общества, представлением о математических основах функционирования
различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умением
взаимодействовать с социальными институтами в соответствии с их функциями и назначением.
Патриотическое воспитание:
сформированностью российской гражданской идентичности, уважения к прошлому и
настоящему российской математики, ценностным отношением к достижениям российских
математиков и российской математической школы, к использованию этих достижений в других
науках, технологиях, сферах экономики.
Духовно-нравственного воспитания:
осознанием духовных ценностей российского народа; сформированностью нравственного
сознания, этического поведения, связанного с практическим применением достижений науки и
деятельностью учёного; осознанием личного вклада в построение устойчивого будущего.
Эстетическое воспитание:
эстетическим отношением к миру, включая эстетику математических закономерностей,
объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам
различных видов искусства.
Физическое воспитание:
сформированностью умения применять математические знания в интересах здорового и
безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание,
сбалансированный режим занятий и отдыха, регулярная физическая активность); физического
совершенствования, при занятиях спортивно-оздоровительной деятельностью.
Трудовое воспитание:
готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам
профессиональной деятельности, связанным с математикой и её приложениями, умением
совершать осознанный выбор будущей профессии и реализовывать собственные жизненные
планы; готовностью и способностью к математическому образованию и самообразованию на
протяжении всей жизни; готовностью к активному участию в решении практических задач
математической направленности.
Экологическое воспитание:
сформированностью экологической культуры, пониманием влияния социальноэкономических процессов на состояние природной и социальной среды, осознанием глобального
характера экологических проблем; ориентацией на применение математических знаний для
решения задач в области окружающей среды, планирования поступков и оценки их возможных
последствий для окружающей среды.
Ценности научного познания:
сформированностью мировоззрения, соответствующего современному уровню развития
науки и общественной практики, пониманием математической науки как сферы человеческой
деятельности, этапов её развития и значимости для развития цивилизации; овладением языком

математики и математической культурой как средством познания мира; готовностью
осуществлять проектную и исследовательскую деятельность индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Метапредметные результаты освоения программы учебного предмета «Математика»
характеризуются овладением универсальными познавательными действиями, универсальными
коммуникативными действиями, универсальными регулятивными действиями.
1) Универсальные познавательные действия, обеспечивают формирование базовых
когнитивных процессов обучающихся (освоение методов познания окружающего мира;
применение логических, исследовательских операций, умений работать с информацией).
Базовые логические действия:
 выявлять и характеризовать существенные признаки математических объектов, понятий,
отношений между понятиями; формулировать определения понятий; устанавливать существенный
признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
 воспринимать, формулировать и преобразовывать суждения: утвердительные и
отрицательные, единичные, частные и общие; условные;
 выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных,
наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и
противоречий;
 делать выводы с использованием законов логики, дедуктивных и индуктивных
умозаключений, умозаключений по аналогии;
 проводить самостоятельно доказательства математических утверждений (прямые и от
противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать
собственные суждения и выводы;
 выбирать способ решения учебной задачи (сравнивать несколько вариантов решения,
выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
 использовать вопросы как исследовательский инструмент познания; формулировать
вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать
гипотезу, аргументировать свою позицию, мнение;
 проводить самостоятельно спланированный эксперимент, исследование по установлению
особенностей математического объекта, явления, процесса, выявлению зависимостей между
объектами, явлениями, процессами;
 самостоятельно формулировать обобщения и выводы по результатам проведённого
наблюдения, исследования, оценивать достоверность полученных результатов, выводов и
обобщений;
 прогнозировать возможное развитие процесса, а также выдвигать предположения о его
развитии в новых условиях.
Работа с информацией:
 выявлять дефициты информации, данных, необходимых для ответа на вопрос и для
решения задачи;
 выбирать информацию из источников различных типов, анализировать, систематизировать
и интерпретировать информацию различных видов и форм представления;
 структурировать информацию, представлять её в различных формах, иллюстрировать
графически;
 оценивать надёжность информации по самостоятельно сформулированным критериям.
2) Универсальные коммуникативные действия, обеспечивают сформированность
социальных навыков обучающихся.
Общение:

 воспринимать и формулировать суждения в соответствии с условиями и целями общения;
ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать
пояснения по ходу решения задачи, комментировать полученный результат;
 в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой
задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с
суждениями других участников диалога, обнаруживать различие и сходство позиций; в
корректной форме формулировать разногласия, свои возражения;
 представлять результаты решения задачи, эксперимента, исследования, проекта;
самостоятельно выбирать формат выступления с учётом задач презентации и особенностей
аудитории.
Сотрудничество:
 понимать и использовать преимущества командной и индивидуальной работы при решении
учебных задач; принимать цель совместной деятельности, планировать организацию совместной
работы, распределять виды работ, договариваться, обсуждать процесс и результат работы;
обобщать мнения нескольких людей;
 участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы»
и иные); выполнять свою часть работы и координировать свои действия с другими членами
команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным
участниками взаимодействия.
3) Универсальные регулятивные действия, обеспечивают формирование смысловых
установок и жизненных навыков личности.
Самоорганизация:
составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся
ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с
учётом новой информации.
Самоконтроль:
 владеть навыками познавательной рефлексии как осознания совершаемых действий и
мыслительных процессов, их результатов; владеть способами самопроверки, самоконтроля
процесса и результата решения математической задачи;
 предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы
в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных
трудностей;
 оценивать соответствие результата цели и условиям, объяснять причины достижения или
недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Освоение учебного курса «Алгебра и начала математического анализа» на уровне среднего
общего образования должно обеспечивать достижение следующих предметных образовательных
результатов:
10 КЛАСС
Числа и вычисления
Оперировать понятиями: рациональное и действительное число, обыкновенная и десятичная
дробь, проценты.
Выполнять арифметические операции с рациональными и действительными числами.
Выполнять приближённые вычисления, используя правила округления, делать прикидку и
оценку результата вычислений.

Оперировать понятиями: степень с целым показателем; стандартная форма записи
действительного числа, корень натуральной степени; использовать подходящую форму записи
действительных чисел для решения практических задач и представления данных.
Оперировать понятиями: синус, косинус и тангенс произвольного угла; использовать запись
произвольного угла через обратные тригонометрические функции.
Уравнения и неравенства
Оперировать понятиями: тождество, уравнение, неравенство; целое, рациональное,
иррациональное уравнение, неравенство; тригонометрическое уравнение;
Выполнять преобразования тригонометрических выражений и решать тригонометрические
уравнения.
Выполнять преобразования целых, рациональных и иррациональных выражений и решать
основные типы целых, рациональных и иррациональных уравнений и неравенств.
Применять уравнения и неравенства для решения математических задач и задач из
различных областей науки и реальной жизни.
Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения,
неравенства по условию задачи, исследовать построенные модели с использованием аппарата
алгебры.
Функции и графики
Оперировать понятиями: функция, способы задания функции, область определения и
множество значений функции, график функции, взаимно обратные функции.
Оперировать понятиями: чётность и нечётность функции, нули функции, промежутки
знакопостоянства.
Использовать графики функций для решения уравнений.
Строить и читать графики линейной функции, квадратичной функции, степенной функции с
целым показателем.
Использовать графики функций для исследования процессов и зависимостей при решении
задач из других учебных предметов и реальной жизни; выражать формулами зависимости между
величинами.
Начала математического анализа
Оперировать понятиями: последовательность, арифметическая и геометрическая прогрессии.
Оперировать понятиями: бесконечно убывающая геометрическая прогрессия, сумма
бесконечно убывающей геометрической прогрессии.
Задавать последовательности различными способами.
Использовать свойства последовательностей и прогрессий для решения реальных задач
прикладного характера.
Множества и логика
Оперировать понятиями: множество, операции над множествами.
Использовать теоретико-множественный аппарат для описания реальных процессов и
явлений, при решении задач из других учебных предметов.
Оперировать понятиями: определение, теорема, следствие, доказательство.
11 КЛАСС
Числа и вычисления
Оперировать понятиями: натуральное, целое число; использовать признаки делимости целых
чисел, разложение числа на простые множители для решения задач.
Оперировать понятием: степень с рациональным показателем.
Оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы.
Уравнения и неравенства

Применять свойства степени для преобразования выражений; оперировать понятиями:
показательное уравнение и неравенство; решать основные типы показательных уравнений и
неравенств.
Выполнять преобразования выражений, содержащих логарифмы; оперировать понятиями:
логарифмическое уравнение и неравенство; решать основные типы логарифмических уравнений и
неравенств.
Находить решения простейших тригонометрических неравенств.
Оперировать понятиями: система линейных уравнений и её решение; использовать систему
линейных уравнений для решения практических задач.
Находить решения простейших систем и совокупностей рациональных уравнений и
неравенств.
Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения,
неравенства и системы по условию задачи, исследовать построенные модели с использованием
аппарата алгебры.
Функции и графики
Оперировать понятиями: периодическая функция, промежутки монотонности функции,
точки экстремума функции, наибольшее и наименьшее значения функции на промежутке;
использовать их для исследования функции, заданной графиком.
Оперировать понятиями: графики показательной, логарифмической и тригонометрических
функций; изображать их на координатной плоскости и использовать для решения уравнений и
неравенств.
Изображать на координатной плоскости графики линейных уравнений и использовать их
для решения системы линейных уравнений.
Использовать графики функций для исследования процессов и зависимостей из других
учебных дисциплин.
Начала математического анализа
Оперировать понятиями: непрерывная функция; производная функции; использовать
геометрический и физический смысл производной для решения задач.
Находить производные элементарных функций, вычислять производные суммы,
произведения, частного функций.
Использовать производную для исследования функции на монотонность и экстремумы,
применять результаты исследования к построению графиков.
Использовать производную для нахождения наилучшего решения в прикладных, в том числе
социально-экономических, задачах.
Оперировать понятиями: первообразная и интеграл; понимать геометрический и физический
смысл интеграла.
Находить первообразные элементарных функций; вычислять интеграл по формуле Ньютона–
Лейбница.
Решать прикладные задачи, в том числе социально-экономического и физического характера,
средствами математического анализа.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
10 КЛАСС
Электронные
(цифровые)
образовательные ресурсы

Количество часов
Наименование
№
разделов и тем
п/п
программы

Множества
рациональных и
1действительных чисел.
Рациональные уравнения
и неравенства

Функции и графики.
2Степень с целым
показателем
Арифметический
корень n–ой степени.
3
Иррациональные
уравнения и неравенства

Формулы
4тригонометрии.Тригономе
трические уравнения

Пр
актичес
Ко
кие,
В нтрольн
самосто
сего
ые
ятельны
работы
е
работы

14

6

18

22

https://www.yaklass.ru/T
R/3UN83N8
https://resh.edu.ru/subject/lesso
n/3785/start/326779/
https://resh.edu.ru/subject/lesso
n/4730/
https://resh.edu.ru/subject/lesso
n/5498/
https://resh.edu.ru/subject/lesso
n/4729/
https://www.yaklass.ru/T
estWork/Info?jid=PYdNomhZ
Gku14tsbBAR_Ig

1

5

1

1

2

6

https://resh.edu.ru/subject
/lesson/4730/start/149073/

8

https://resh.edu.ru/subject
/lesson/4733/start/199150/
https://resh.edu.ru/subject/lesso
n/6019/start/
https://resh.edu.ru/subject/lesso
n/3863/start/327031/
https://resh.edu.ru/subject/lesso
n/3876/start/199243/
https://resh.edu.ru/subject/lesso
n/4324/
https://resh.edu.ru/subject/lesso
n/3490/
https://resh.edu.ru/subject/lesso
n/3489/
https://resh.edu.ru/subject/lesso
n/4734/
https://resh.edu.ru/subject/lesso
n/4735/

2

Последовательности
и прогрессии
Повторение,
6обобщение,
систематизация знаний
ОБЩЕЕ КОЛИЧЕСТВО
ЧАСОВ ПО ПРОГРАММЕ
5

5
3
68

0

2

1

0

7

22

11 КЛАСС

п/
п

№ Наименов
ание разделов
и тем
программы
Степень с
рациональным
показателем.
Показательная
1
функция.
Показательные
уравнения и
неравенства

Логарифм
ическая
функция.
2
Логарифмическ
ие уравнения и
неравенства

Тригономе
трические
функции и их
графики.
3
Тригонометриче
ские
неравенства

Производн
ая.
4 Применение
производной

5

Интеграл и

Количество часов
Конт
В
рольные
сего
работы

12

12

9

24

1

Практи
ческие,
самостоятель
ные работы

4

1

3

1

3

2

7

1

3

Электронные (цифровые)
образовательные ресурсы

https://resh.edu.ru/subject/lesson/3
841/start/
https://resh.edu.ru/subject/lesson/5627/st
art/
https://resh.edu.ru/subject/lesson/4
731/start/
https://resh.edu.ru/subject/lesson/5
753/start/
https://resh.edu.ru/subject/lesson/3823/st
art/
https://resh.edu.ru/subject/lesson/3834/st
art/
https://resh.edu.ru/subject/lesson/4732/st
art/
https://resh.edu.ru/subject/lesson/3852/st
art/
https://resh.edu.ru/subject/lesson/6
111/start/
https://resh.edu.ru/subject/lesson/3923/st
art/
https://resh.edu.ru/subject/lesson/4920/st
art/
https://resh.edu.ru/subject/lesson/5570/st
art/
https://resh.edu.ru/subject/lesson/3943/st
art/
https://resh.edu.ru/subject/lesson/4
921/start/
https://resh.edu.ru/subject/lesson/6112/st
art/
https://resh.edu.ru/subject/lesson/4923/st
art/
https://resh.edu.ru/subject/lesson/3954/st
art/201011/
https://resh.edu.ru/subject/lesson/6114/st
art/
https://resh.edu.ru/subject/lesson/4922/st
art/201042/
https://resh.edu.ru/subject/lesson/4

его применения

Системы
6
уравнений
Натуральн
ые
7 и целые
числа
Повторени
е, обобщение,
8
систематизация
знаний
ОБЩЕЕ
КОЛИЧЕСТВО
ЧАСОВ ПО
ПРОГРАММЕ

9

12
6

18

102

1

3

0

2

2

6

9

31

924/
https://resh.edu.ru/subject/lesson/3993/
https://resh.edu.ru/subject/lesson/6117/
https://resh.edu.ru/subject/lesson/4037/
https://resh.edu.ru/subject/lesson/6118/st
art/
https://resh.edu.ru/subject/lesson/3
812/start/158950/

Тематическое планирование учебного курса (по годам обучения)
10 класс
Название раздела
(темы)
(число часов)
Множества
рациональных
и
действительных
чисел.
Рациональные уравнения и
неравенства
(14 ч)

Основное содержание
раздела (темы)
Множество, операции
над
множествами.
Диаграммы Эйлера―Венна.
Рациональные числа.
Обыкновенные и десятичные
дроби,
проценты,
бесконечные периодические
дроби.
Арифметические
операции с рациональными
числами,
преобразования
числовых
выражений.
Применение
дробей
и
процентов для решения
прикладных
задач
из
различных отраслей знаний
и реальной жизни.
Действительные числа.
Рациональные
и
иррациональные
числа.
Арифметические операции с
действительными числами.
Приближённые вычисления,
правила
округления,
прикидка
и
оценка
результата вычислений.
Тождества
и
тождественные
преобразования. Уравнение,
корень
уравнения.
Неравенство,
решение
неравенства.
Метод
интервалов.
Решение
целых
и
дробно-рациональных
уравнений и неравенств

Основные виды
деятельности
обучающихся
Использовать
теоретикомножественный аппарат
для
описания
хода
решения математических
задач, а также реальных
процессов и явлений, при
решении задач из других
учебных предметов.
Оперировать
понятиями:
рациональное
число,
действительное
число,
обыкновенная
дробь,
десятичная
дробь,
проценты.
Выполнять
арифметические
операции
с
рациональными
и
действительными
числами; приближённые
вычисления,
используя
правила округления.
Делать прикидку и
оценку
результата
вычислений.
Оперировать
понятиями: тождество,
уравнение, неравенство;
целое и рациональное
уравнение, неравенство.
Выполнять
преобразования целых и
рациональных
выражений.
Решать основные
типы
целых
иррациональных
уравнений и неравенств.
Применять
рациональные уравнения
и
неравенства
для
решения математических

Функции и
Степень
с
показателем
(6 ч)

Функция,
способы
графики.
целым задания функции. Взаимно
обратные функции. График
функции.
Область определения и
множество
значений
функции. Нули функции.
Промежутки
знакопостоянства. Чётные и
нечётные функции.
Степень
с
целым
показателем.
Стандартная
форма
записи
действительного
числа.
Использование подходящей
формы
записи
действительных чисел для
решения практических задач
и представления данных.
Степенная функция с
натуральным
и
целым
показателем. Её свойства и
график

Арифметический
корень
n–ой
степени.
Иррациональные уравнения
и неравенства
(18 ч)

Арифметический
корень натуральной степени.
Действия
с
арифметическими корнями
n–ой степени.
Решение
иррациональных уравнений
и неравенств.
Свойства и график
корня n-ой степени

задач
и
задач
из
различных
областей
науки и реальной жизни
Оперировать
понятиями:
функция,
способы
задания
функции,
взаимно
обратные
функции,
область определения и
множество
значений
функции,
график
функции; чётность и
нечётность
функции,
нули
функции,
промежутки
знакопостоянства.
Выполнять
преобразования
степеней
с
целым
показателем.
Использовать
стандартную
форму
записи действительного
числа.
Формулировать и
иллюстрировать
графически
свойства
степенной функции.
Выражать
формулами зависимости
между величинами.
Использовать
цифровые ресурсы для
построения
графиков
функции и изучения их
свойств
Формулировать,
записывать
в
символической форме и
иллюстрировать
примерами
свойства
корня n-ой степени.
Выполнять
преобразования
иррациональных
выражений.
Решать основные
типы
иррациональных
уравнений и неравенств.

Синус,
косинус
и
Формулы тригонометрии.
тангенс
числового
Тригонометрические
аргумента.
Арксинус,
уравнения
арккосинус и арктангенс
(22 ч)
числового аргумента.
Тригонометрическая
окружность,
определение
тригонометрических
функций
числового
аргумента.
Основные
тригонометрические
формулы. Преобразование
тригонометрических
выражений.
Решение
тригонометрических
уравнений
Последовательности,
Последовательности и
способы
задания
прогрессии
последовательностей.
(5 ч)
Монотонные
последовательности.
Арифметическая
и
геометрическая прогрессии.
Бесконечно
убывающая
геометрическая прогрессия.
Сумма
бесконечно
убывающей геометрической
прогрессии.
Формула
сложных процентов.
Использование
прогрессии для решения
реальных задач прикладного
характера

Применять
для
решения
различных
задач
иррациональные
уравнения и неравенства.
Строить,
читать
график
корня
n-ой
степени.
Использовать
цифровые ресурсы для
построения
графиков
функций и изучения их
свойств
Оперировать
понятиями:
синус,
косинус
и
тангенс
произвольного угла.
Использовать
запись
произвольного
угла
через
обратные
тригонометрические
функции.
Выполнять
преобразования
тригонометрических
выражений.
Решать основные
типы
тригонометрических
уравнений
Оперировать
понятиями:
последовательность,
арифметическая
и
геометрическая
прогрессии; бесконечно
убывающая
геометрическая
прогрессия,
сумма
бесконечно убывающей
геометрической
прогрессии.
Задавать
последовательности
различными способами.
Применять
формулу
сложных
процентов для решения
задач
из
реальной

Основные
понятия
Повторение, обобщение,
курса алгебры и начал
систематизация знаний
математического анализа 10
(3 ч)
класса,
обобщение
и
систематизация знаний

11 класс
Название раздела
Основное
(темы)
содержание раздела
(количество часов)
(темы)
Степень
с
Степень
с
рациональным
рациональным
показателем.
Свойства
показателем.
степени.
Показательная
Преобразование
функция.
выражений, содержащих
Показательные
рациональные степени.
уравнения и неравенства
Показательные
(12 ч)
уравнения и неравенства.
Показательная
функция, её свойства и
график

Логарифмическая
функция.
Логарифмические
уравнения и неравенства
(12 ч)

практики
(с
использованием
калькулятора).
Использовать
свойства
последовательностей
и
прогрессий для решения
реальных
задач
прикладного характера
Применять
основные понятия курса
алгебры
и
начал
математического анализа
для решения задач из
реальной жизни и других
школьных дисциплин

Основные виды
деятельности
обучающихся
Формулировать,
записывать
в
символической форме и
иллюстрировать
примерами
свойства
степени.
Применять свойства
степени
для
преобразования
выражений.
Формулировать
и
иллюстрировать
графически
свойства
показательной функции.
Решать
основные
типы
показательных
уравнений и неравенств.
Использовать
цифровые ресурсы для
построения
графиков
функций и изучения их
свойств
Логарифм
числа.
Формулировать,
Десятичные и натуральные записывать
в
логарифмы.
символической форме и
Преобразование
иллюстрировать
выражений, содержащих примерами
свойства
логарифмы.
логарифма.

Логарифмические
Выполнять
уравнения и неравенства.
преобразования
Логарифмическая
выражений, содержащих
функция, её свойства и логарифмы.
график
Формулировать
и
иллюстрировать
графически
свойства
логарифмической функции.
Решать
основные
типы
логарифмических
уравнений и неравенств.
Использовать
цифровые ресурсы для
построения
графиков
функций и изучения их
свойств.
Знакомиться
с
историей
развития
математики
Тригонометрические
Тригонометрические
Оперировать
функции и их графики. функции, их свойства и понятием периодическая
графики.
функция.
Тригонометрические
Примеры
неравенства
Строить,
тригонометрических
(9 ч)
анализировать,
неравенств
сравнивать
графики
тригонометрических
функций.
Формулировать
и
иллюстрировать
графически
свойства
тригонометрических
функций.
Решать простейшие
тригонометрические
неравенства.
Использовать
графики для решения
тригонометрических
неравенств.
Использовать
цифровые ресурсы для
построения
графиков
функций и изучения их
свойств
Непрерывные
Производная.
Оперировать
функции.
Метод
понятиями:
непрерывная
Применение производной
интервалов для решения функция;
производная
(24 ч)
неравенств.
функции.
Производная
Использовать

функции. Геометрический
и
физический
смысл
производной.
Производные
элементарных
функций.
Производная
суммы,
произведения,
частного
функций.
Применение
производной
к
исследованию функций на
монотонность
и
экстремумы. Нахождение
наибольшего
и
наименьшего
значения
функции на отрезке.
Применение
производной
для
нахождения
наилучшего
решения в прикладных
задачах, для определения
скорости
процесса,
заданного формулой или
графиком
Интеграл
применения
(9 ч)

и

его

Системы уравнений
(12 ч)

Первообразная.
Таблица первообразных.
Интеграл,
геометрический
и
физический
смысл
интеграла.
Вычисление
интеграла по формуле
Ньютона―Лейбница

Системы линейных
уравнений.
Решение
прикладных
задач
с
помощью
системы
линейных уравнений.
Системы
и
совокупности
целых,
рациональных,
иррациональных,
показательных,
логарифмических

геометрический
и
физический
смысл
производной для решения
задач.
Находить
производные
элементарных
функций,
вычислять производные
суммы,
произведения,
частного функций.
Использовать
производную
для
исследования функции на
монотонность
и
экстремумы, применять
результаты исследования
к построению графиков.
Применять
производную
для
нахождения
наилучшего
решения в прикладных, в
том
числе
социальноэкономических, задачах.
Знакомиться
с
историей
развития
математического анализа
Оперировать
понятиями:
первообразная, интеграл.
Находить
первообразные
элементарных
функций;
вычислять интеграл по
формуле
Ньютона ― Лейбница.
Знакомиться
с
историей
развития
математического анализа
Оперировать
понятиями:
система
линейных уравнений и её
решение.
Использовать
систему
линейных
уравнений для решения
практических задач.
Находить решения
простейших
систем
и
совокупностей

уравнений и неравенств.
Использование
графиков функций для
решения
уравнений
и
систем.
Применение
уравнений,
систем
и
неравенств к решению
математических задач и
задач
из
различных
областей науки и реальной
жизни
Натуральные и целые
Натуральные и целые
числа
в
задачах
из
числа
реальной жизни.
(6 ч)
Признаки делимости
целых чисел

Повторение,
обобщение,
систематизация знаний
(18 ч)

Основные
понятия
курса алгебры и начал
математического анализа,
обобщение
и
систематизация знаний

рациональных уравнений и
неравенств.
Использовать
графики
функций
для
решения уравнений.
Моделировать
реальные ситуации на
языке алгебры, составлять
выражения,
уравнения,
неравенства и системы по
условию
задачи,
исследовать построенные
модели с использованием
аппарата алгебры
Оперировать
понятиями: натуральное
число, целое число.
Использовать
признаки делимости целых
чисел, разложение числа на
простые множители для
решения задач
Решать прикладные
задачи
из
различных
областей науки и реальной
жизни
с
помощью
основных понятий курса
алгебры
и
начал
математического анализа.
Выбирать
оптимальные
способы
вычислений.
Использовать
для
решения задач уравнения,
неравенства и системы
уравнений,
свойства
функций и графиков

Календарно-тематическое поурочное планирование по предмету
«Алгебра и начала математического анализа. Базовый уровень» 10 класс.
УМК : Колягин Ю. М. и др.. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. организаций: базовый и
углубл. уровни. - М., Просвещение, 2020.Программа: Алгебра и начала математического анализа . Сборник рабочих программ 10 – 11
классы: учеб. пособие для учителей общеобразоват. организаций: базовый и углубл. уровни/ Составитель: Т.А. Бурмистрова/. - М.,
Просвещение», 2018.
Количество часов в неделю: – 2 ч.в неделю.
Соответствует требованиям ФГОС и ФОП
Количество часов
Электронны
Практическ
№
Дата е цифровые
Тема урока
В
Содерж ие и
п/п
изучения образовательные
сего
ание
самостоятельные
ресурсы
работы,
1
1

2

3

4

5

Множества рациональных и действительных чисел. Рациональные уравнения и неравенства 14ч
Множество, операции над
множествами. Диаграммы
1
Эйлера―Венна
Рациональные числа.
Обыкновенные и десятичные дроби,
проценты, бесконечные периодические
1
дроби
Арифметические операции с
рациональными числами,
1
1
преобразования числовых выражений
Применение дробей и процентов
для решения прикладных задач из
различных отраслей знаний и реальной
1
жизни
Применение дробей и процентов
для решения прикладных задач из
1
различных отраслей знаний и реальной
1
жизни

6
7
8
9

Действительные числа.
Рациональные и иррациональные числа
Арифметические операции с
действительными числами
Приближённые вычисления,
правила округления, прикидка и оценка
результата вычислений
Тождества и тождественные
преобразования

10

Уравнение, корень уравнения

11

Неравенство, решение неравенства

12

Метод интервалов

13

14

15

16

17
18

1
1
1

1
1

1
1
1
1

1

Решение целых и дробнорациональных уравнений и неравенств
1
Контрольная работа №1 по теме
«Множества рациональных и
1
действительных чисел. Рациональные
1
уравнения и неравенств»
Функции и графики. Степень с целым показателем
Функция, способы задания
функции. Взаимно обратные функции
1
График функции. Область
определения и множество значений
функции. Нули функции. Промежутки
1
знакопостоянства
Чётные и нечётные функции
Степень с целым показателем.
Стандартная форма записи

1
1

6ч

1

19

20

21
22
23
24
25
26
27
28
29
30
31

действительного числа
Использование подходящей формы
записи действительных чисел для
решения практических задач и
1
представления данных
Контрольная работа №2 по теме
«Степенная функция с натуральным и
1
целым показателем. Её свойства и
1
график»
Арифметический корень n-ой степени. Иррациональные уравнения и
неравенства
Арифметический корень
натуральной степени
1
Арифметический корень
1
натуральной степени
1
Свойства арифметического корня
натуральной степени
1
Свойства арифметического корня
натуральной степени
1
Свойства арифметического корня
1
натуральной степени
1
Действия с арифметическими
корнями n–ой степени
1
Действия с арифметическими
корнями n–ой степени
1
Действия с арифметическими
1
корнями n–ой степени
1
Действия с арифметическими
корнями n–ой степени
1
Контрольная работа №3 по теме
1
«Арифметический корень n–ой степени»
1
Решение иррациональных

18ч

32
33
34
35
36
37
38

39
40
41
42
43

44
45

уравнений и неравенств
1
Решение иррациональных
уравнений и неравенств
1
Решение иррациональных
уравнений и неравенств
1
Решение иррациональных
уравнений и неравенств
1
Решение иррациональных
уравнений и неравенств
1
Свойства и график корня n-ой
степени
1
Свойства и график корня n-ой
степени
1
Контрольная работа №4 по теме
"Иррациональные уравнения и
1
1
неравенства"
Формулы тригонометрии. Тригонометрические уравнения
Синус, косинус и тангенс числового
аргумента
1
Синус, косинус и тангенс числового
аргумента
1
Арксинус, арккосинус и арктангенс
числового аргумента
1
Арксинус, арккосинус и арктангенс
числового аргумента
1
Тригонометрическая окружность,
определение тригонометрических
1
функций числового аргумента
Тригонометрическая окружность,
определение тригонометрических
1
функций числового аргумента
Основные тригонометрические

1

1

1

22 ч

1

1

1

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

формулы
Основные тригонометрические
формулы
Основные тригонометрические
формулы
Основные тригонометрические
формулы
Преобразование
тригонометрических выражений
Преобразование
тригонометрических выражений
Преобразование
тригонометрических выражений
Преобразование
тригонометрических выражений
Контрольная работа №5 по теме
«Формулы тригонометрии»
Решение тригонометрических
уравнений
Решение тригонометрических
уравнений
Решение тригонометрических
уравнений
Решение тригонометрических
уравнений
Решение тригонометрических
уравнений
Решение тригонометрических
уравнений
Контрольная работа №6 по теме
"Тригонометрические уравнения"

1
1
1

1
1
1

1

1
1

1

1
1

1

1
1
1

1
1

1

1
1
1

1

61

62

63

Последовательности и прогрессии
Последовательности, способы
задания последовательностей.
Монотонные последовательности
Арифметическая и геометрическая
прогрессии. Использование прогрессии
для решения реальных задач
прикладного характера
Бесконечно убывающая
геометрическая прогрессия. Сумма
бесконечно убывающей геометрической
прогрессии

64

Формула сложных процентов

65

Формула сложных процентов

66
67

1

1

1

1

1
1

1
Повторение, обобщение и систематизация знаний
Повторение. Арифметический
корень n-ой степени. Иррациональные
1
уравнения и неравенства
Итоговая контрольная работа №7

Повторение. Тригонометрические
выражения и уравнения.
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО
ПРОГРАММЕ
68

5ч

1

3ч

1

1
68

7

22

Календарно-тематическое поурочное планирование по предмету
«Алгебра и начала математического анализа. Базовый уровень» 11 класс.
УМК : Колягин Ю. М. и др.. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. организаций: базовый и
углубл. уровни. - М., Просвещение, 2021.Программа: Алгебра и начала математического анализа . Сборник рабочих программ 10 – 11
классы: учеб. пособие для учителей общеобразоват. организаций: базовый и углубл. уровни/ Составитель: Т.А. Бурмистрова/. - М.,
Просвещение», 2018.
Количество часов в неделю: – 3 ч.в неделю.
Соответствует требованиям ФГОС и ФОП
Количество часов
№ п/п

1
2
3
4
5
6
7
8
9
10
11

Тема урока

Всего

Контрольные
работы

Практические и Дата
самостоятельные изучения
работы

Степень с рациональным показателем. Показательная функция. Показательные
уравнения и неравенства
Степень с рациональным показателем
1
Свойства степени
1
1
Преобразование выражений, содержащих
1
рациональные степени
Преобразование выражений, содержащих
1
рациональные степени
Преобразование выражений, содержащих
1
1
рациональные степени
Показательные уравнения и неравенства
1
Показательные уравнения и неравенства
1
Показательные уравнения и неравенства
1
1
Показательные уравнения и неравенства
1
Показательные уравнения и неравенства
1
1
Показательная функция, её свойства и
1
график

12ч

Электронные
цифровые
образовательные
ресурсы

12

13
14
15
16
17
18
19
20
21
22
23

24

25
26

Контрольная работа №1 по теме "Степень с
рациональным показателем. Показательная
1
1
функция. Показательные уравнения и
неравенства"
Логарифмическая функция. Логарифмические уравнения и неравенства
Логарифм числа
1
Десятичные и натуральные логарифмы
1
Преобразование выражений, содержащих
1
логарифмы
Преобразование выражений, содержащих
1
логарифмы
Преобразование выражений, содержащих
1
1
логарифмы
Преобразование выражений, содержащих
1
логарифмы
Логарифмические уравнения и неравенства
1
Логарифмические уравнения и неравенства
1
1
Логарифмические уравнения и неравенства
1
Логарифмическая функция, её свойства и
1
график
Логарифмическая функция, её свойства и
1
1
график
Контрольная работа №2 по теме
«Логарифмическая функция.
1
1
Логарифмические уравнения и
неравенства»
Тригонометрические функции и их графики. Тригонометрические неравенства
Тригонометрические функции, их свойства
1
и графики
Тригонометрические функции, их свойства
1
1
и графики

12ч

9ч

27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45

Тригонометрические функции, их свойства
и графики
Тригонометрические функции, их свойства
и графики
Примеры тригонометрических неравенств
Примеры тригонометрических неравенств
Примеры тригонометрических неравенств
Примеры тригонометрических неравенств
Контрольная работа №3 по теме
"Тригонометрические функции и их
графики. Тригонометрические
неравенства"
Производная. Применение производной
Непрерывные функции
Метод интервалов для решения неравенств
Метод интервалов для решения неравенств
Производная функции
Производная функции
Геометрический и физический смысл
производной
Геометрический и физический смысл
производной
Производные элементарных функций
Производные элементарных функций
Производная суммы, произведения,
частного функций
Производная суммы, произведения,
частного функций
Контрольная работа № 4 по теме
«Производная. Геометрический и
физический смысл производной№

1
1

1

1
1
1
1
1

1

1
24ч

1
1
1
1
1

1
1

1
1

1

1
1

1

1
1
1

1

46
47
48
49
50
51
52
53
54
55

56

57
58
59
60

Применение производной к исследованию
функций на монотонность и экстремумы
Применение производной к исследованию
функций на монотонность и экстремумы
Применение производной к исследованию
функций на монотонность и экстремумы
Применение производной к исследованию
функций на монотонность и экстремумы
Нахождение наибольшего и наименьшего
значения функции на отрезке
Нахождение наибольшего и наименьшего
значения функции на отрезке
Нахождение наибольшего и наименьшего
значения функции на отрезке
Нахождение наибольшего и наименьшего
значения функции на отрезке
Нахождение наибольшего и наименьшего
значения функции на отрезке
Нахождение наибольшего и наименьшего
значения функции на отрезке
Применение производной для нахождения
наилучшего решения в прикладных
задачах, для определения скорости
процесса, заданного формулой или
графиком
Контрольная работа №5 по теме
"Производная. Применение производной"
Интеграл и его применение
Первообразная. Таблица первообразных
Первообразная. Таблица первообразных
Интеграл, геометрический и физический
смысл интеграла

1
1
1

1

1
1
1
1

1

1
1
1

1

1

1

1
9ч

1
1
1

1

61
62
63
64
65
66
67
68
69
70

71

72

73
74

Интеграл, геометрический и физический
смысл интеграла
Интеграл, геометрический и физический
смысл интеграла
Вычисление интеграла по формуле
Ньютона―Лейбница
Вычисление интеграла по формуле
Ньютона―Лейбница
Вычисление интеграла по формуле
Ньютона―Лейбница
Контрольная работа №6 по теме «Интеграл
и его применение»
Системы уравнений
Системы линейных уравнений
Системы линейных уравнений
Решение прикладных задач с помощью
системы линейных уравнений
Решение прикладных задач с помощью
системы линейных уравнений
Системы и совокупности целых,
рациональных, иррациональных,
показательных, логарифмических
уравнений и неравенств
Системы и совокупности целых,
рациональных, иррациональных,
показательных, логарифмических
уравнений и неравенств
Системы и совокупности целых,
рациональных, иррациональных,
показательных, логарифмических
уравнений и неравенств
Системы и совокупности целых,

1
1

1

1
1

1

1
1

1
12ч

1
1
1
1

1

1

1

1
1

1

75
76

77

78

79
80
81
82
83
84
85
86
87
88
89
90

рациональных, иррациональных,
показательных, логарифмических
уравнений и неравенств
Использование графиков функций для
1
решения уравнений и систем
Использование графиков функций для
1
решения уравнений и систем
Применение уравнений, систем и
неравенств к решению математических
1
задач и задач из различных областей науки
и реальной жизни
Контрольная работа №7 по теме "Системы
1
уравнений"
Натуральные и целые числа
Натуральные и целые числа в задачах из
1
реальной жизни
Натуральные и целые числа в задачах из
1
реальной жизни
Натуральные и целые числа в задачах из
1
реальной жизни
Признаки делимости целых чисел
1
Признаки делимости целых чисел
1
Признаки делимости целых чисел
1
Повторение, обобщение, систематизация знаний
Повторение. Квадратные уравнения
1
Повторение.Иррациональные уравнения
1
Повторение. Тригонометрические
1
уравнения
Повторение.. Показательные уравнения
1
Повторение.Логарифмические уравнения
1
Повторение.Уравнения
1

1

1
6ч

1

1
18ч
1

1
1

Повторение.Неравенства
Повторение.Неравенства
Повторение.Неравенства
Повторение. Неравенства
Повторение. Системы уравнений
Повторение. Системы уравнений
Повторение. Функции
Повторение. Функции
Итоговая контрольная работа
Итоговая контрольная работа
Обобщение, систематизация знаний за курс
101
алгебры и начал математического анализа
10-11 классов
Обобщение, систематизация знаний за курс
102
алгебры и начал математического анализа
10-11 классов
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ
91
92
93
94
95
96
97
98
99
100

1
1
1
1
1
1
1
1
1
1

1

1
1
1
1

1

1
102

9

31

ПРОГРАММНОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ
ПРОГРАММЫ
Класс
Обязательные
Методический материал для учителя
учебные материалы
для ученика
1. Дидактические
материалы по алгебре и
началам
Б.М.Ивлев,С.М.Саакяни
др. – М.:Просвещение,
2. Изучение
алгебры и начал
анализа в 10-11
учебнику: Книга для
учителя/ Н.Е.Федорова,
3. Ященко И.В.
Алгебра и начала
анализа.
Универсальный
многоуровневый
сборник задач. 10 – 11
классы: учеб. пособие
для общеобразоват.
организаций/ И.В.
Ященко, С.А.
Шестаков. – 2-е изд. –
М.: Просвещение, 2020
11
Алгебра и
1. Бурмистрова
1.Дидактические
Алгебра и
начала
Т.А. «Программы
материалы по алгебре и
начала
математического
общеобразовательных началам
математического анализа. 11
учреждений.Алгебра и Б.М.Ивлев,С.М.Саакяни
начала анализа
класс:учебник для
начала анализа. 10др. – М.:Просвещение,
общеобразовательных 11классы»,составитель
2. Изучение
учреждений: базовый Т. А. Бурмистрова, алгебры и начал
уровень
М.«Просвещние»,2018 анализа в 10-11
/Ю.М.Колягин и др. –
учебнику: Книга для
М.:Просвещение,2021
учителя/ Н.Е.Федорова,
3.
.
Математика.Подготовка
к ЕГЭ.
10
Алгебра и
начала
математического
анализа

Алгебра и
начала
математического
анализа.10 класс:
учебник для
общеобразовательных
учреждений: базовый
уровень /
Ю.М.Колягин и др. –
М.:
Просвещение,2020

1. Бурмистрова
Т.А. «Программы
общеобразовательных
учреждений.
Алгебра и начала
анализа. 1011классы»,
составитель Т. А.
Бурмистрова, М.«Просвещние»,2018

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ
1.
https://resh.edu.ru/
2.
https://www.yaklass.ru/
3.
«Я сдам ЕГЭ. Среднее общее образование. Учебный модуль по решению трудных
заданий по учебному предмету «Математика». 10-11 классы» АО Издательство «Прсвещение»
https://lecta.ru/roditelyu?utm_source=newprosv&utm_medium=parents-cards
4.
Уроки. Конструкторы https://urok.1c.ru/library/
5.
https://math-ege.sdamgia.ru/
6.
Алгебра и начала анализа. Методическое пособие по математике 10 -11 классы
https://rosuchebnik.ru/metodicheskaja-pomosch/materialy/predmet-matematika_type-metodicheskoeposobie/
7.
http://seninvg07.narod.ru/005_matem_vilen_6.htm


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».